許多新的適合結構應用的鋁合金的發(fā)展又提出了一個問題,就是找到合適的連接方法。首先要有合適的母材。但如果沒有連接這一材料的實際可行的方法,把這種材料作為裝配材料也不現(xiàn)實。
鋁作為結構金屬的突破是隨著二十世紀四十年代惰性氣體焊接工藝的出現(xiàn)而實現(xiàn)的。比如,GMAW(氣體金屬電弧焊),也叫MIG(熔化極惰性氣體保護電弧焊);GTAW(氣體鎢極電弧焊),也叫TIG(鎢極惰性氣體保護電弧焊)。隨著在焊接中出現(xiàn)使用惰性氣體保護熔化鋁的焊接工藝,就可能以高速,打出高質量,高承載力焊縫,沒有腐蝕焊劑。
攪拌摩擦焊除了具有普通摩擦焊技術的優(yōu)點外,還可以進行多種接頭形式和不同焊接位置的連接。挪威已建立了世界上個攪拌摩擦焊商業(yè)設備,可焊接厚3—15mm、尺寸6×16的Al船板;1998年美國波音公司的空間和防御實驗室引進了攪拌摩擦焊技術,用于焊接某些火箭部件;麥道公司也把這種技術用于制造Delta運載火箭的推進劑貯箱。
攪拌摩擦焊方法與常規(guī)摩擦焊一樣。攪拌摩擦焊也是利用摩擦熱與塑性變形熱作為焊接熱源。不同之處在于攪拌摩擦焊焊接過程是由一個圓柱體或其他形狀(如帶螺紋圓柱體)的攪拌針(welding pin)伸入工件的接縫處,通過焊頭的高速旋轉,使其與焊接工件材料摩擦,從而使連接部位的材料溫度升高軟化。同時對材料進行攪拌摩擦來完成焊接的。焊接過程如圖《攪拌摩擦焊示意圖》所示。在焊接過程中工件要剛性固定在背墊上,焊頭邊高速旋轉,邊沿工件的接縫與工件相對移動。焊頭的突出段伸進材料內部進行摩擦和攪拌,焊頭的肩部與工件表面摩擦生熱,并用于防止塑性狀態(tài)材料的溢出,同時可以起到清除表面氧化膜的作用。